Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski
    Date: 2017
    Source: Global Change Biology
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (784.0 KB)

    Description

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80–650 μg/L) and corresponding decreasing concentrations of P (~90–11 μg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass‐specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass‐specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18–0.69] eV, leaf litter E = 0.30 [95% CI = 0.072–0.54] eV, wood E = 0.41 [95% CI = 0.18–0.64] eV) close to predicted MTE values. There was evidence that temperature‐driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass‐specific respiration (leaf litter). Respiration rates increased under nutrient‐enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Manning, David W. P.; Rosemond, Amy D.; Gulis, Vladislav; Benstead, Jonathan P.; Kominoski, John S. 2017. Nutrients and temperature additively increase stream microbial respiration. Global Change Biology. 24(1): e233-e247. https://doi.org/10.1111/gcb.13906.

    Cited

    Google Scholar

    Keywords

    Benthic organic matter, metabolic theory of ecology, microbial activity, nitrogen, phosphorus, rivers, temperature dependence

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56017