Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Louis-Etienne Robert; Brian R. Sturtevant; Barry J. Cooke; Patrick M. A. James; Marie-Josée Fortin; Philip A. Townsend; Peter T. Wolter; Daniel Kneeshaw
    Date: 2018
    Source: Ecography
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (943.0 KB)


    Landscape-level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity, increase outbreak frequency, and decrease spatial synchrony in spruce budworm Choristoneura fumiferana outbreaks. We investigated these hypotheses using tree ring samples collected across 51 sites pooled into 16 subareas distributed across a large ecoregion spanning the international border between Ontario (Canada), and Minnesota (USA). This ecoregion contains contrasting land management zones with clear differences in forest landscape structure (i.e. forest composition and spatial configuration) while minimizing the confounding influence of climate. Cluster analyses of the 76-yr time-series generally grouped by subareas found within the same land management zone. Spatial nonparametric covariance analysis indicated that the highest and lowest degree of spatial synchrony of spruce budworm outbreaks were found within unmanaged wilderness and lands managed at fine spatial scales in Minnesota, respectively. Using multivariate analysis, we also found that forest composition, configuration, and climate together accounted for a total of 40% of the variance in outbreak chronologies, with a high level of shared variance between composition and configuration (13%) and between composition and climate (9%). At the scale of our study, climate on its own did not explain any of the spatial variation in outbreaks. Outbreaks were of higher frequency, lower intensity, and less spatially synchronized in more fragmented, younger forests with a lower proportion of host species, with opposing outbreak characteristics observed in regions characterised by older forests with more concentrated host species. Our study is the first quantitative evaluation of the long-standing 'silvicultural hypothesis' of spruce budworm management specifically conducted at a spatio-temporal scale for which it was intended.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Robert, Louis-Etienne; Sturtevant, Brian R.; Cooke, Barry J.; James, Patrick M.A.; Fortin, Marie-Josée; Townsend, Philip A.; Wolter, Peter T.; Kneeshaw, Daniel. 2018. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography. 40: 1-16.


    Google Scholar


    spruce budworm, harvest disturbance, landscape ecology, forest management legacies, dendrochronology, outbreak synchrony

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page