Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Peter H. AndersonKurt H. JohnsenJohn R. Butnor; Carlos A. Gonzalez-Benecke; Lisa J. Samuelson
    Date: 2018
    Source: Forest Ecology and Management
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (456.0 KB)

    Description

    Storage of belowground carbon (C) is an important component of total forest C. However, belowground C changes temporally due to forest growth and tree mortality (natural and via harvesting) and these fluctuations are critical for modeling C in forests under varying management regimes. To date, little progress has been made in quantifying the rate of decay of southern pines in general, and specifically in longleaf pine (Pinus palustris Mill.) coarse root systems. Decomposition rates of lateral roots and tap roots of longleaf pine were quantified in situ under field conditions across the species’ range to create a model for necromass loss. The roots of 37 longleaf pine stumps were excavated from Florida, Georgia, Louisiana, and North Carolina. The age of the trees when cut ranged from 14 to 260 years, and the time since cut ranged from 5 to 70 years. Remaining lateral roots to a 1m depth plus the entire tap root were removed, dried, weighed and analyzed for C and nitrogen (N) content. Total dry necromass of harvested roots ranged from 8 to 195 kg tree−1. Soil C and N content at 15 cm depth were significantly higher near the stump compared to half-way between and adjacent to the nearest living longleaf pine. A regression model was developed to predict necromass loss. The final model included years since cut, stump diameter, and average minimum monthly air temperature as predictors (R2=0.83). For example, a 100- year-old tree would have a predicted root decomposition rate (k) of −0.120 for lateral roots and −0.038 per year for tap roots. Results suggest that longleaf pine coarse roots persist in the environment longer than the tap roots of loblolly pine.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Anderson, Peter H.; Johnsen, Kurt H.; Butnor, John R.; Gonzalez-Benecke, Carlos A.; Samuelson, Lisa J. 2018. Predicting longleaf pine coarse root decomposition in the southeastern US. Forest Ecology and Management. 425: 1-8. https://doi.org/10.1016/j.foreco.2018.05.024.

    Cited

    Google Scholar

    Keywords

    Longleaf pine Decomposition rate Carbon Nitrogen Coarse root Loblolly pine

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56227