Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A.  Gonzalez-Meler
    Date: 2018
    Source: Forests
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (1019.0 KB)

    Description

    While the relationship between abiotic drivers of sap flux are well established, the role of biotic disturbances on sap flux remain understudied. The invasion of the emerald ash borer (Agrilus planipennis Fairmaire, EAB) into North America in the 1990s represents a significant threat to ash trees (Fraxinus spp.), which are a substantial component of temperate forests. Serpentine feeding galleries excavated by EAB larvae in the cambial and phloem tissue are linked to rapid tree mortality. To assess how varying levels of EAB infestation impact the plant water status and stress levels of mature green ash (Fraxinus pennsylvanica Marshall) trees, we combined tree-level sap flux measurements with leaf-level gas exchange, isotopes, morphology and labile carbohydrate measurements. Results show sap flux and whole tree water use are reduced by as much as 80% as EAB damage increases. Heavily EAB impacted trees exhibited reduced leaf area and leaf mass, but maintained constant levels of specific leaf area relative to lightly EAB-impacted trees. Altered foliar gas exchange (reduced light saturated assimilation, internal CO2 concentrations) paired with depleted foliar δ13C values of heavily EAB impacted trees point to chronic water stress at the canopy level, indicative of xylem damage. Reduced photosynthetic rates in trees more impacted by EAB likely contributed to the lack of nonstructural carbohydrate (soluble sugars and starch) accumulation in leaf tissue, further supporting the notion that EAB damages not only phloem, but xylem tissue as well, resulting in reduced water availability. These findings can be incorporated into modeling efforts to untangle post disturbance shifts in ecosystem hydrology.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Flower, Charles E.; Lynch, Douglas J.; Knight, Kathleen S.; Gonzalez-Meler, Miquel A. . 2018. Biotic and Abiotic Drivers of Sap Flux in Mature Green Ash Trees (Fraxinus pennsylvanica) Experiencing Varying Levels of Emerald Ash Borer (Agrilus planipennis) Infestation. Forests. 9(6): 301-. 17 p. https://doi.org/10.3390/f9060301.

    Cited

    Google Scholar

    Keywords

    emerald ash borer (Agrilus planipennis), invasive species, Fraxinus, forest disturbance, sap flux, tree water use, thermal dissipation probe

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56246