Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash
    Date: 2018
    Source: Journal of Hydrology
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (1.0 MB)


    A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and disaggregate temporarily, and they may not be accurate for local watersheds (i.e., state level or smaller watersheds). This study applied the US-EPA (Environmental Protection Agency)’s Climate Assessment Tool (CAT) to create future climate variability scenarios based on historical measured data for local watersheds. As a case demonstration, CAT was employed in conjunction with HSPF (Hydrological Simulation Program-FORTRAN) model to assess the impacts of the potential future extreme rainfall events and
    air temperature increases upon nitrate-nitrogen (NO3-N) and orthophosphate (PO4) loads in the Lower YazooRiver Watershed (LYRW), a local watershed in Mississippi, USA. Results showed that the 10 and 20% increases in rainfall rate, respectively, increased NO3-N load by 9.1 and 18% and PO4 load by 12 and 24% over a 10-year simulation period. In contrast, simultaneous increases in air temperature by 1.0 °C and rainfall rate by 10% as well as air temperature by 2.0 °C and rainfall rate by 20% increased NO3-N load by 12% and 20%, and PO4 load by 14 and 26%, respectively. A summer extreme rainfall scenario was created if a 10% increase in rainfall rate increased the total volume of rainwater for that summer by 10% or more. When this event occurred, it could increase the monthly loads of NO3-N and PO4, by 31 and 41%, respectively, for that summer. Therefore, the extreme rainfall events had tremendous impacts on the NO3-N and PO4 loads. It is apparent that CAT is a flexible and useful tool to modify historical rainfall and air temperature data to predict climate variability impacts on water quality for local watersheds.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Ouyang, Ying; Parajuli, Prem B.; Feng, Gary; Leininger, Theodor D.; Wan, Yongshan; Dash, Padmanava. 2018. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds. Journal of Hydrology. 563: 363-371. 9 p.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page