Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sean P. HealeyWarren B. Cohen; Zhiqiang Yang; C. Kenneth Brewer; Evan B. Brooks; Noel Gorelick; Alexander J. Hernandez; Chengquan Huang; M. Joseph Hughes; Robert E. Kennedy; Thomas R. Loveland; Gretchen G. Moisen; Todd A. Schroeder; Stephen V Stehman; James E. Vogelmann; Curtis E. Woodcock; Limin Yang; Zhe Zhu
    Date: 2018
    Source: Remote Sensing of Environment. 204: 717-728.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (1019.0 KB)


    The ever-increasing volume and accessibility of remote sensing data has spawned many alternative approaches for mapping important environmental features and processes. For example, there are several viable but highly varied strategies for using time series of Landsat imagery to detect changes in forest cover. Performance among algorithms varies across complex natural systems, and it is reasonable to ask if aggregating the strengths of an ensemble of classifiers might result in increased overall accuracy. Relatively simple rules have been used in the past to aggregate classifications among remotely sensed maps (e.g. using majority predictions), and in other fields, empirical models have been used to create situationally specific algorithm weights. The latter process, called “stacked generalization” (or “stacking”), typically uses a parametric model for the fusion of algorithm outputs. We tested the performance of several leading forest disturbance detection algorithms against ensembles of the outputs of those same algorithms based upon stacking using both parametric and Random Forests-based fusion rules. Stacking using a Random Forests model cut omission and commission error rates in half in many cases in relation to individual change detection algorithms, and cut error rates by one quarter compared to more conventional parametric stacking. Stacking also offers two auxiliary benefits: alignment of outputs to the precise definitions built into a particular set of empirical calibration data; and, outputs which may be adjusted such that map class totals match independent estimates of change in each year. In general, ensemble predictions improve when new inputs are added that are both informative and uncorrelated with existing ensemble components. As increased use of cloud-based computing makes ensemble mapping methods more accessible, the most useful new algorithms may be those that specialize in providing spectral, temporal, or thematic information not already available through members of existing ensembles.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Healey, Sean P.; Cohen, Warren B.; Yang, Zhiqiang; Brewer, C. Kenneth; Brooks, Evan B.; Gorelick, Noel; Hernandez, Alexander J.; Huang, Chengquan; Hughes, M. Joseph; Kennedy, Robert E.; Loveland, Thomas R.; Moisen, Gretchen G.; Schroeder, Todd A.; Stehman, Stephen V.; Vogelmann, James E.; Woodcock, Curtis E.; Yang, Limin; Zhu, Zhe. 2018. Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment. 204: 717-728.


    Google Scholar


    multiple classifier systems, Landsat, change detection, ensemble

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page