Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ronald E. McRoberts; Qi Chen; Grant M. Domke; Göran Ståhl; Svetlana Saarela; James A. Westfall
    Date: 2016
    Source: Forest Ecology and Management
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (973.0 KB)

    Description

    Carbon accounting is at the heart of efforts to mitigate the effects of climate change. One approach for estimating population parameters for live tree stem carbon entails three primary steps: (1) construction of an individual tree, allometric carbon model, (2) application of the model to tree-level data for a probability sample of plots, and (3) use of a probability-based (design-based) estimator of mean carbon per unit area for a population of interest. Compliance with the IPCC good practice guidance requires satisfaction of two criteria, one related to minimizing bias and one related to minimizing uncertainty. For this carbon estimation procedure, the portion of uncertainty attributed to the variance of the probabilitybased estimator of the population mean using the plot-level predictions is usually correctly estimated, but the portion attributed to the variance of the allometric model estimator is usually ignored. The result is that the total variance of the population mean estimator cannot be asserted to comply with the IPCC good practice criteria because not only is it not minimized, it is not even correctly estimated. Within the framework of what is coming to be characterized as hybrid inference, model-based inferential methods were used to estimate the variance of the tree-level allometric model estimator which was then propagated through to the variance of the probability-based estimator of mean carbon per unit area. This combined estimator, consisting of a model-based estimator used to predict a variable for a probability sample of a population followed by a probability-estimator of the population total or mean using the sample predictions, is characterized as a hybrid estimator. For this study, two probability-based estimators of the mean were considered, simple random sampling estimators and model-assisted regression estimators that used airborne laser scanning (ALS) data as auxiliary information. The variance of the allometric model estimator incorporated variances of distributions of diameter and height measurement errors, covariances of model parameter estimators, model residual variance, and variances of distributions of wood densities and carbon content proportions. The novel features of the study included the hybrid inferential framework, consideration of six sources of uncertainty including the variances of distributions of wood densities and carbon content proportions, use of ALS data with model-assisted regression estimators of the population mean, and use of confidence intervals for the population mean as the basis for comparisons rather than intermediate products such as model prediction accuracy. The primary conclusions were that the variance of the allometric model estimator was negligible or marginally negligible relative to the variance of the probability estimator when using species-specific allometric models and simple random sampling estimators, but non-negligible when using species-specific models and model-assisted regression estimators and when using a nonspecific model with either estimator.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    McRoberts, Ronald E.; Chen, Qi; Domke, Grant M.; Ståhl, Göran; Saarela, Svetlana; Westfall, James A. 2016. Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management. 378: 44-56. https://doi.org/10.1016/j.foreco.2016.07.007.

    Cited

    Google Scholar

    Keywords

    Allometric model, Uncertainty analysis, Wood density, Carbon content

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page