Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Miguel O. Román; Zhuosen Wang; Qingsong Sun; Virginia Kalb; Steven D. Miller; Andrew Molthan; Lori Schultz; Jordan Bell; Eleanor C. Stokes; Bhartendu Pandey; Karen C. Seto; Dorothy Hall; Tomohiro Oda; Robert E. Wolfe; Gary Lin; Navid Golpayegani; Sadashiva Devadiga; Carol Davidson; Sudipta Sarkar; Cid Praderas; Jeffrey Schmaltz; Ryan Boller; Joshua Stevens; Olga M. Ramos González; Elizabeth Padilla; José Alonso; Yasmín Detrés; Roy Armstrong; Ismael Miranda; Yasmín Conte; Nitza Marrero; Kytt MacManus; Thomas Esch; Edward J. Masuoka
    Date: 2018
    Source: Remote Sensing of Environment
    Publication Series: Scientific Journal (JRNL)
    Station: International Institute of Tropical Forestry
    PDF: Download Publication  (7.0 MB)


    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500m resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF effects; (3) geometric- optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Román, Miguel O.; Wang, Zhuosen; Sun, Qingsong; Kalb, Virginia; Miller, Steven D.; Molthan, Andrew; Schultz, Lori; Bell, Jordan; Stokes, Eleanor C.; Pandey, Bhartendu; Seto, Karen C.; Hall, Dorothy; Oda, Tomohiro; Wolfe, Robert E.; Lin, Gary; Golpayegani, Navid; Devadiga, Sadashiva; Davidson, Carol; Sarkar, Sudipta; Praderas, Cid; Schmaltz, Jeffrey; Boller, Ryan; Stevens, Joshua; Ramos González, Olga M.; Padilla, Elizabeth; Alonso, José; Detrés, Yasmín; Armstrong, Roy; Miranda, Ismael; Conte, Yasmín; Marrero, Nitza; MacManus, Kytt; Esch, Thomas; Masuoka, Edward J. 2018. NASA's Black Marble nighttime lights product suite. Remote Sensing of Environment. 210: 113-143.


    Google Scholar


    Suomi-NPP, JPSS, NASA black marble, VIIRS, Night lights, NTL, Urban dynamics, Long-term monitoring, Lunar BRDF, Albedo, Atmospheric correction

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page