Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Bijan Seyednasrollah; Jennifer J. Swenson; Jean-Christophe Domec; James S. Clark
    Date: 2018
    Source: Remote Sensing of Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Interactions between climate and ecosystem properties that control phenological responses to climate warming and drought are poorly understood. To determine contributions from these interactions, we used space-borne remotely sensed vegetation indices to monitor leaf development across climate gradients and ecoregions in the southeastern United States. We quantified how air temperature, drought severity, and canopy thermal stress contribute to changes in leaf flushing from mountainous to coastal plain regions by developing a hierarchical state-space Bayesian model. We synthesized daily field climate data with daily vegetation indices and canopy surface temperature during spring green-up season at 59 sites in the southeastern United States between 2001 and 2012. Our results demonstrated strong interaction effects between ecosystem properties and climate variables across ecoregions. We found spring green-up is faster in the mountains, while coastal forests express a larger sensitivity to inter-annual temperature anomalies. Despite our detection of a decreasing trend in sensitivity to warming with temperature in all regions, we identified an ecosystem interaction: Deciduous dominated forests are less sensitive to warming than are those with fewer deciduous trees, likely due to the continuous presence of leaves in evergreen species throughout the season. Mountainous forest green-up is more susceptible to intensifying drought and moisture deficit, while coastal areas are relatively resilient. We found that with increasing canopy thermal stress, defined as canopy-air temperature difference, leaf development slows following dry years, and accelerates following wet years.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Seyednasrollah, Bijan; Swenson, Jennifer J.; Domec, Jean-Christophe; Clark, James S. 2018. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment. 209: 446-455. https://doi.org/10.1016/j.rse.2018.02.059.

    Cited

    Google Scholar

    Keywords

    Multispectral, daily vegetation index, NDVI, EVI, MODIS, phenology, forest, green-up, Bayesian, hierarchical modeling, spring, climate change, warming, land surface temperature, southeastern US

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56622