Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): P. Zion Klos; Michael L. Goulden; Clifford S. Riebe; Christina L. Tague; A. Toby O’Geen; Brady A. Flinchum; Mohammad Safeeq; Martha H. Conklin; Stephen C. Hart; Asmeret Asefaw Berhe; Peter C. Hartsough; W. Steven Holbrook; Roger C. Bales
    Date: 2018
    Source: Wiley Interdisciplinary Reviews: Water. 5(3): e1277
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.0 MB)


    Enhanced understanding of subsurface water storage will improve prediction of future impacts of climate change, including drought, forest mortality, wildland fire, and strained water security. Previous research has examined the importance of plant‐accessible water in soil, but in upland landscapes within Mediterranean climates, soil often accounts for only a fraction of subsurface water storage. We draw insights from previous research and a case study of the Southern Sierra Critical Zone Observatory to define attributes of subsurface storage; review observed patterns in their distribution; highlight nested methods for estimating them across scales; and showcase the fundamental processes controlling their formation. We review observations that highlight how forest ecosystems subsist on lasting plant‐accessible stores of subsurface water during the summer dry period and during multiyear droughts. The data suggest that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite or saprock, which reaches up to 10–20 m beneath the surface. This review confirms that the system harbors large volumes of subsurface water and shows that they are vital to supporting the ecosystem through the summer dry season and extended droughts. This research enhances understanding of deep subsurface water storage across landscapes and identifies key remaining challenges in predicting and managing response to climate and land use change in mountain ecosystems of the Sierra Nevada and in other Mediterranean climates worldwide.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Klos, P. Zion; Goulden, Michael L.; Riebe, Clifford S.; Tague, Christina L.; O’Geen, A. Toby; Flinchum, Brady A.; Safeeq, Mohammad; Conklin, Martha H.; Hart, Stephen C.; Berhe, Asmeret Asefaw; Hartsough, Peter C.; Holbrook, W. Steven; Bales, Roger C. 2018. Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate. Wiley Interdisciplinary Reviews: Water. 5(3): e1277.


    Google Scholar


    Water Storage, Critical Zone, Vegetation

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page