Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Yude PanKevin McCulloughDavid Y. Hollinger
    Date: 2018
    Source: Forest Ecosystems
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (3.0 MB)


    Background: Forest biodiversity is the foundation of many ecosystem services, and the effect of biodiversity on ecosystem functioning and processes (BEF) has been a central issue in biodiversity studies. Although many hypotheses have been developed to interpret global gradients of biodiversity, there has not been complete agreement on mechanisms controlling biodiversity patterns and distributions. Differences may be due to limited observation data and inconsistencies of spatial scales in analysis. Methods: In this study, we take advantage of USDA Forest Service forest inventory and analysis (FIA) data for exploring regional forest biodiversity and BEF in New England forests. The FIA data provide detailed information of sampled plots and trees for the region, including 6000 FIA plots and more than 33,000 individual trees. Biodiversity models were used to analyze the data. Results: Tree species diversity increases from the north to the south at a rate about 2–3 species per latitudinal degree. Tree species diversity is better predicted by tree height than forest age or biomass. Very different distribution patterns of two common maple species, sugar maple (Acer saccharum) and red maple (Acer rubrum), highlight the vulnerability of sugar maple and its potential replacement by red maple on New England landscapes. Red maple generally already outperforms sugar maple, and will likely and continuously benefit from a changing climate in New England. Conclusions: We conclude that forest structure (height) and resources (biomass) are more likely foundational characteristics supporting biodiversity rather than biodiversity determining forest productivity and/or biomass. The potential replacement of red maple for sugar maple in the New England areas could affect biodiversity and stability of forest ecosystem functioning because sugar maple plays important ecological roles distinct from red maple that are beneficial to other tree species in northern hardwood forests. Such a change may not affect forest resilience in terms of forest productivity and biomass as these are similar in red maple and sugar maple, however, it would almost certainly alter forest structure across the landscape.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Pan, Yude; McCullough, Kevin; Hollinger, David Y. 2018. Forest biodiversity, relationships to structural and functional attributes, and stability in New England forests. Forest Ecosystems. 5(1): 179-.


    Google Scholar


    Forest biodiversity, Biodiversity effect on function (BEF), New England, Forest inventory data, Species diversity, Latitudinal diversity gradient, Forest stability of ecosystem functioning, Forest resilience, Sugar maple, Red maple, Changing climate

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page