Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): James O. Sickman; Amanda E. James; Mark E. FennAndrzej Bytnerowicz; Delores M. Lucero; Peter M. Homyak
    Date: 2019
    Source: Science of The Total Environment. 646: 1253-1264
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (888.0 KB)

    Description

    Estimating nitrogen (N) deposition to terrestrial ecosystems is complicated by the multiple forms and routes of N loading from the atmosphere.We used the integrated total nitrogen input (ITNI) method, which is based on the principle of isotope dilution within a plant-liquid-sand system, to quantify N inputs to coastal sage scrub ecosystems in Riverside, California. Using the ITNI method, we measured atmospheric N deposition of 29.3 kg N ha−1 yr−1 over a range of aboveground plant biomass of 228 to 424 g m−2. From 85 to 96% of the atmospheric N inputs were taken up by plants in the ITNI modules with most of the assimilation mediated by, and stored in, aboveground biomass. Parallel measurements using conventional approaches yielded deposition rates of 25.2 kg N ha−1 yr−1 when using the inferential method and 4.8 kg N ha−1 yr−1 using throughfall collectors. The relatively low throughfall estimates were attributed to canopy retention of inorganic N, low rainfall, and to the fact that the throughfall flux data did not include organic N and stomatal uptake of N gases. Also, during dry periods, frequent watering of ITNI modules may have increased stomatal conductance and led to overestimates of N deposition. Across published studies that used the ITNI method, areal N deposition rates varied by ~40-fold, were positively correlated with plant biomass and 90% of the variability in measured deposition rates can be explained by plant biomass production. The ITNI method offers a holistic approach to measuring atmospheric N deposition in arid ecosystems, although more study is needed to understand how watering rates effect N deposition measurements.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Sickman, James O.; James, Amanda E.; Fenn, Mark E.; Bytnerowicz, Andrzej; Lucero, Delores M.; Homyak, Peter M. 2019. Quantifying atmospheric N deposition in dryland ecosystems: A test of the Integrated Total Nitrogen Input (ITNI) method. Science of The Total Environment. 646: 1253-1264. https://doi.org/10.1016/j.scitotenv.2018.07.320.

    Cited

    Google Scholar

    Keywords

    Total nitrogen deposition, ITNI method, Drylands, Inferential method, Throughfall

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56765