Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Improved understanding of the physiological mechanisms of tree mortality following fires is important with the predicted increase in wildfires under climate change, as well as continued use of prescribed fire for forest management. Disruption of water transport in the xylem from exposure to the heat plume of a fire has been hypothesized as a mechanism of delayed tree mortality. This heat plume rapidly increases vapor pressure deficit in the canopy, increasing transpiration and tension on the xylem causing cavitation, thus reducing water transport and leading to eventual tree death. We aimed to increase understanding of the mechanisms behind such unintended mortality by determining whether branches and roots of longleaf pine are more vulnerable to cavitation when exposed to temperatures expected to occur during prescribed or wild fires. Additionally, we modeled expected branch cavitation under fire conditions based on measured cavitation vulnerability. We heated branch and root segments in a water bath to 41 ◦C and 54 ◦C and simulated the negative xylem water potentials experienced during exposure to a heat plume using a double-ended pressure chamber. When branches and roots were pressurized under elevated temperatures, xylem in both organs was more vulnerable to cavitation. In branches, as temperature was increased from 23 ◦C–54 ◦C, the pressure at which 50% conductivity was lost (P50) increased from −3.55MPa to −2.79 MPa, while in roots, P50 increased from −2.08 MPa to −1.36MPa. When the P50 values measured under elevated temperatures were included in plume and hydraulic models, branches were predicted to experience conditions leading to 50% loss of conductivity up to two meters higher into the canopy than under ambient temperatures. Overall, these results suggest that heating of branches and roots during fires can increase vulnerability to xylem cavitation, potentially leading to hydraulic disruption and delayed tree mortality.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lodge, Alexandra G; Dickinson, Matthew B; Kavanagh, Kathleen L. 2018. Xylem heating increases vulnerability to cavitation in longleaf pine. Environmental Research Letters. 13(5): 055007-. 9 p. https://doi.org/10.1088/1748-9326/aabbe5.

    Cited

    Google Scholar

    Keywords

    Pinus palustris, fire, vulnerability curve, cavitation, surface tension, roots

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page