Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    WaSSI-C is an ecohydrological model which couples water and carbon cycles with water use efficiency (WUE) derived from global eddy flux observations. However, a significant limitation of the WaSSI-C model is that it only runs serially. High resolution simulations at a large scale are therefore computationally expensive and cause a run-time memory burden. Using distributed (MPI) and shared (OpenMP) memory parallelism techniques, we revised the original model as dWaSSI-C. We showed that using MPI was effective in reducing the computational run-time and memory use. Two experiments were carried out to simulate water and carbon fluxes over the Australian continent to test the sensitivity of the parallelized model to input data-sets of different spatial resolutions, as well as to WUE parameters for different vegetation types. These simulations were completed within minutes using dWaSSI-C, whereas they would not have been possible with the serial version. The dWaSSI-C model was able to simulate the seasonal dynamics of gross ecosystem productivity (GEP) reasonably well when compared to observations at four eddy flux sites. Sensitivity analysis showed that simulated GEP was more sensitive to WUE during the summer compared to winter in Australia, and woody savannas and grasslands showed higher sensitivity than evergreen broadleaf forests and shrublands. Although our results are model-specific, the parallelization approach can be adopted in other similar ecosystem models for large scale applications.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Liu, Ning; Shaikh, Mohsin Ahmed; Kala, Jatin; Harper, Richard J.; Dell, Bernard; Liu, Shirong; Sun, Ge. 2018. Parallelization of a distributed ecohydrological model. Environmental Modelling & Software. 101: 51-63.


    Google Scholar


    High performance computing, Ecohydrological modeling, Distributed memory parallelism Shared memory parallelism, Water and carbon fluxes

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page