Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Devendra M. Amatya; Marcin Fialkowski; Agnieszka Bitner
    Date: 2019
    Source: Wetlands
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (10.0 MB)


    The objective of this paper is to present a relatively simplified model to predict daily water table (WT) by solving ordinary differential equation dWT (t)/dt = F (α1, α2, α3, WT0(t), RF (t), PET (t)), with α1, α2, α3, WT0 as parameters, and RF (rainfall) and PET (potential evapotranspiration), respectively, as inputs. The model was calibrated and validated with WT on four poorly to moderately drained soils (Lenoir, Rains, Lynchburg, and Goldsboro) on a forested wetland. Calibration results were in good agreement with the measured WT for all soils, except the Goldsboro with deeper WT. r2 (coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) statistics both ranged from 0.81 for the Lenoir to 0.89 and 0.87, respectively, for the Lynchburg. Average absolute daily deviation (AADD) varied from 10.8 cm for Lenoir to 16.7 cm for Rains. The performance was somewhat poorer, during relatively dry periods with deeper WT, yielding r2 and NSE as low as 0.55 and 0.29, respectively, for Lenoir, and large AADD for Lynchburg. Discrepancies were associated with WT overprediction for deeper depths. The new model is capable of describing the WT for poorly drained high water table soils, with a potential for assessing effects of land management, wetland hydrology, and climate changes.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Amatya, Devendra M.; Fialkowski, Marcin; Bitner, Agnieszka. 2019. A daily water table depth computing model for poorly drained soils. Wetlands. 39: 39-54.


    Google Scholar


    Forested Wetlands, Recharge, Evapotranspiration, Soil Permeability, Rooting Depth, Ordinary Differential Equations

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page