Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Northern wetland soils hold globally significant carbon (C) and mercury (Hg) stocks whose cycling feeds back to atmospheric pollution, climate change, and the trophic dynamics of adjacent aquatic ecosystems. At a more local level, patterns of variation in the hydrologic, physical and chemical properties of wetland soils inform the appreciation of these ecosystems in their own right; describing patterns of variation, their potential drivers and consequences is a key step towards placing wetland soils in the context of broader landscape-level processes, such as C and Hg export to aquatic ecosystems. In this case study, we investigated a 10 ha, 3000 year old lakeplain wetland in the Great Lakes region (U.S.A.), located at the interface between a 120 ha, first-order watershed and a 6700 ha inland lake. We monitored water tables, measured soil morphology and physical characteristics, applied interpolation and mapping to model hydrologic flowpaths and spatial variation in soil depth, morphology, total C and Hg stocks, and used chemical analyses (elemental concentrations and isotope signatures, UV–Vis and FTIR spectroscopy) to quantify relationships between soil C and Hg pools, organic matter composition, and C cycling rates. Key findings from this site include: 1) whole-profile soil C and Hg stocks are readily predicted from soil depth; 2) soil saturation is semipermanent but spatially and temporally variable; 3) accumulated organic soil materials are dominated by aromatic moieties, but possess considerable amounts of labile polysaccharides; 4) subtle, topography- mediated hydrologic flowpaths create profiles of interbedded organic and mucky sand horizons with sharp discontinuities in their C and Hg concentrations. Compared to peatlands across the region and North America, soil depths and C stocks are rather low, averaging 84 cm and 394 Mg ha−1, respectively. On the contrary, total Hg concentrations of organic soil materials (137 and 191 ng g−1 for fibric vs. sapric, respectively) are at the high end for wetlands of the Great Lakes region, and more representative of those observed in areas of the eastern U.S. with historically elevated atmospheric deposition. Given past and potentially increased future variation in hydrologic regimes due to climate change, the presence of banded (sandy) profiles that may act as preferential flowpaths, and the large quantities of Hg and labile C held in these soils, they may act as significant sources of C and Hg to the atmosphere or adjacent aquatic ecosystems.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Nave, Lucas E.; Drevnick, Paul E.; Heckman, Katherine A.; Hofmeister, Kathryn L.; Veverica, Timothy J.; Swanston, Christopher W. 2017. Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. Geoderma. 305: 40-52.


    Google Scholar


    Landform, Ecosystem, Organic soil, Water table, Biogeochemistry

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page