Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jonathan D. Goode; Carson R. Barefoot; Justin L. Hart; Daniel C. Dey
    Date: 2018
    Source: Journal of Forestry Research
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (872.0 KB)

    Description

    Stand structural complexity enhancement is an increasingly popular management objective, especially on public lands. Complex stand structures are hypothesized to support a relatively high degree of native forest diversity and be more resistant and resilient to disturbances. Complex structures are characterized by the presence of deadwood and heterogeneity of tree-size classes and tree architecture. Relatively little is known about how discrete disturbance events affect structural complexity and compositional diversity in Quercus-dominated stands at fine spatial scales (i.e. neighborhoods). We established 20 0.05 ha fixed-radius plots on the Sipsey Wilderness of William B. Bankhead National Forest in northern Alabama to quantify woody plant species composition and structure. Trees were mapped on each plot to quantify overstory structural complexity and compositional diversity. We extracted two cores from all canopy Quercus spp. ≥ 5 cm diameter at breast height to quantify age, recruitment pulses, and reconstruct canopy disturbance history. Shannon species diversity in the sampled area was 1.75 for trees, 2.08 for saplings, and 1.69 for seedlings. Quercus alba had the greatest basal area, and Ostrya virginiana had the highest density. The stand exhibited a reverse J-shaped distribution with a q-factor of 1.72. The oldest Quercus dated to 1795, and the largest recruitment pulse occurred in the 1870s. The mean return interval for intermediateseverity disturbance was 38 years. Although we documented no relationships between disturbance frequency and compositional diversity at the neighborhood scale (0.05 ha), less frequent disturbance was associated with higher structural complexity (r2 = 0.258, p = 0.026) at the neighborhood scale. We suggest that localized disturbance increases species diversity and structural complexity, but these processes are manifest at the stand level and not at the neighborhood scale. We conclude that the spatial variability (i.e. size, shape, orientation, microsite conditions) is likely more influential on diversity and complexity than the temporal variation (frequency) of these processes at the neighborhood scale.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Goode, Jonathan D.; Barefoot, Carson R.; Hart, Justin L.; Dey, Daniel C. 2018. Disturbance history, species diversity, and structural complexity of a temperate deciduous forest. Journal of Forestry Research. 119(1): 19-. 18 p. https://doi.org/10.1007/s11676-018-0746-y.

    Cited

    Google Scholar

    Keywords

    Canopy gap, Quercus (oak), Stand development, Succession

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/56994