Skip to main content
U.S. flag

An official website of the United States government

Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA

Author(s):

Debjani Sihi
Eric A. Davidson
Min Chen
Kathleen E. Savage
Andrew D. Richardson
Trevor F. Keenan

Year:

2018

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Northern Research Station

Source:

Agricultural and Forest Meteorology

Description

Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed as a way to disentangle the confounding factors of apparent temperature sensitivity of Rh and improve the performance of ecosystem models and ESMs. The objective of this work was to insert into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh and evaluate the model performance in terms of soil and ecosystem respiration. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen, soluble C substrates, and extracellular enzymes to the enzymatic reaction site. Here, we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration). We used high-frequency soil flux data from automated soil chambers and landscape-scale ecosystem fluxes from eddy covariance towers at two AmeriFlux sites (Harvard Forest, MA and Howland Forest, ME) in the northeastern USA to estimate parameters, validate the merged model, and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal and inter-annual dynamics of soil respiration (Soil R) compared to the FöBAAR-only model for the Harvard Forest, where higher frequency and duration of drying events significantly regulate substrate supply to heterotrophs. However, DAMM-FöBAAR showed improvement over FöBAAR-only at the boreal transition Howland Forest only in unusually dry years. The frequency of synopticscale dry periods is lower at Howland, resulting in only brief water limitation of Rh in some years. At both sites, the declining trend of soil R during drying events was captured by the DAMM-FöBAAR model; however, model performance was also contingent on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the model-data mismatch. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than the wide variety of empirical functions that are commonly used, and these DAMM functions could be readily incorporated into other ecosystem models and ESMs.

Citation

Sihi, Debjani; Davidson, Eric A.; Chen, Min; Savage, Kathleen E.; Richardson, Andrew D.; Keenan, Trevor F.; Hollinger, David Y. 2018. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agricultural and Forest Meteorology. 252: 155-166. https://doi.org/10.1016/j.agrformet.2018.01.026.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/57002