Skip to main content
U.S. flag

An official website of the United States government

Carbon dynamics in the hyporheic zone of a headwater mountain stream in the Cascade Mountains, Oregon

Author(s):

Hayley A. Corson-Rikert
Roy Haggerty
Mary V Santelmann

Year:

2016

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Pacific Northwest Research Station

Source:

Water Resources Research. 52(10): 7556-7576.

Description

We investigated carbon dynamics in the hyporheic zone of a steep, forested, headwater catchment western Oregon, USA. Water samples were collected monthly from the stream and a well network during base flow periods. We examined the potential for mixing of different source waters to explain concentrations of DOC and DIC. We did not find convincing evidence that either inputs of deep groundwater or lateral inputs of shallow soil water influenced carbon dynamics. Rather, carbon dynamics appeared to be controlled by local processes in the hyporheic zone and overlying riparian soils. DOC concentrations were low in stream water (0.04–0.09 mM), and decreased with nominal travel time through the hyporheic zone (0.02–0.04 mM lost over 100 h). Conversely, stream water DIC concentrations were much greater than DOC (0.35–0.7 mM) and increased with nominal travel time through the hyporheic zone (0.2–0.4 mM gained over 100 h). DOC in stream water could only account for 10% of the observed increase in DIC. In situ metabolic processing of buried particulate organic matter as well as advection of CO2 from the vadose zone likely accounted for the remaining 90% of the increase in DIC. Overall, the hyporheic zone was a source of DIC to the stream. We suggest that, in mountain stream networks, hyporheic exchange facilitates the transformation of particulate organic carbon buried in floodplains and transports the DIC that is produced back to the stream where it can be evaded to the atmosphere.

Citation

Corson-Rikert, Hayley A.; Wondzell, Steven M.; Haggerty, Roy; Santelmann, Mary V. 2016. Carbon dynamics in the hyporheic zone of a headwater mountain stream in the Cascade Mountains, Oregon. Water Resources Research. 52(10): 7556-7576. https://doi.org/10.1002/2016WR019303.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/57038