Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Carolyn M. Gibson; Merritt R. Turetsky; Karl Cottenie; Evan S. Kane; Gregory Houle; Eric S. Kasischke
    Date: 2016
    Source: Journal of Vegetation Science
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (419.0 KB)


    Questions: How does fire severity, measured as depth of burn of ground layer fuels, control the regeneration of understorey species across black spruce-dominated stands varying in pre-fire organic layer depths? Are successional shifts from evergreen to deciduous understorey vegetation more likely to occur with greater depth of burn? Does a shift in understorey vegetation community towards more deciduous species influence carbon accumulation in vegetation biomass? Location: Northern boreal forest, interior Alaska. Methods: We sampled 32 stands in interior Alaska that burned in 2003 and 2004 inwhich depth of burn had been recorded soon after fire. In 2014 we characterized tree density, understorey vegetation composition, above- and belowground vegetation carbon pools, and a suite of environmental variables. We used ANOVA andmultivariate redundancy analysismodels to analyse the dominant controls on vegetation composition and carbon pools. Results: Fire severity was a strong control on post-fire tree and non-vascular species composition. Ten years post-fire, sites that experienced deeper burning of organic layers had a higher abundance of deciduous tree species, fire-adapted mosses, forbs and graminoids, and lower abundances of evergreen shrubs and Sphagnum mosses. Environmental variables (elevation, soil bulk density and mineral soil pH, moisture and temperature) served as important controls on tree and vascular understorey species composition. We found no evidence that carbon pools associated with recovering vegetation biomass were influenced by landscape position, fire severity or environmental variables. Conclusions: Both fire frequency and depth of burn are projected to increase with a warmer climate in interior Alaska. These shifts in fire regime are expected to favour the regeneration of deciduous species over conifers, which have the potential to regulate successional pathways and large-scale trends in albedo, which both ultimately could influence ecosystem–climate feedbacks and dampen future fire cycles. Our results show that understorey species composition is controlled by fire severity, suggesting that more severe burning causes a decline in the self-replacement of conifer communities across a range of hydrologic settings. Overall, our results suggest a loss of resilience in black spruce forests in the face of a changing fire regime. However, we found no evidence that fire severity influences vegetation carbon pools 10 yrs post-fire, suggesting that there is less landscape variation in biomass carbon pools than in vegetation composition and succession during early post-fire succession.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Gibson, Carolyn M.; Turetsky, Merritt R.; Cottenie, Karl; Kane, Evan S.; Houle, Gregory; Kasischke, Eric S. 2016. Variation in plant community composition and vegetation carbon pools a decade following a severe fire season in interior Alaska. Journal of Vegetation Science. 27(6): 1187-1197.


    Google Scholar


    Black spruce, Boreal forest, Deciduous, Depth of burn, Fire severity, Steady state, Successional trajectory, Understorey species composition, Vegetation carbon pools

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page