Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    The vast extent and inaccessibility of boreal forest ecosystems are barriers to routine monitoring of forest structure and composition. In this research, we bridge the scale gap between intensive but sparse plot measurements and extensive remote sensing studies by collecting forest inventory variables at the plot scale using an unmanned aerial vehicle (UAV) and a structure from motion (SfM) approach. At 20 Forest Inventory and Analysis (FIA) subplots in interior Alaska, we acquired overlapping imagery and generated dense, 3D, RGB (red, green, blue) point clouds. We used these data to model forest type at the individual crown scale as well as subplot-scale tree density (TD), basal area (BA), and aboveground biomass (AGB). We achieved 85% cross-validation accuracy for five species at the crown level. Classification accuracy was maximized using three variables representing crown height, form, and color. Consistent with previous UAV-based studies, SfM point cloud data generated robust models of TD (r2 = 0.91), BA (r2 = 0.79), and AGB (r2 = 0.92), using a mix of plot- and crown-scale information. Precise estimation of TD required either segment counts or species information to differentiate black spruce from mixed white spruce plots. The accuracy of species-specific estimates of TD, BA, and AGB at the plot scale was somewhat variable, ranging from accurate estimates of black spruce TD (+/−1%) and aspen BA (−2%) to misallocation of aspen AGB (+118%) and white spruce AGB (−50%). These results convey the potential utility of SfM data for forest type discrimination in FIA plots and the remaining challenges to develop classification approaches for species-specific estimates at the plot scale that are more robust to segmentation error.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Alonzo, Michael; Andersen, Hans-Erik; Morton, Douglas; Cook, Bruce. 2018. Quantifying boreal forest structure and composition using UAV structure from motion. Forests. 9(3): 119-. https://doi.org/10.3390/f9030119.

    Cited

    Google Scholar

    Keywords

    Boreal forest, structure from motion, unmanned aerial vehicle, species classification, tree density, basal area, aboveground biomass.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/57109