Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert E. Keane; Rachel A. Loehman; Lisa M. Holsinger; Donald A. Falk; Philip Higuera; Sharon M. HoodPaul F. Hessburg
    Date: 2018
    Source: Ecosphere. 9(9): e02414.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (2.0 MB)


    Goals of fostering ecological resilience are increasingly used to guide U.S. public land management in the context of anthropogenic climate change and increasing landscape disturbances. There are, however, few operational means of assessing the resilience of a landscape or ecosystem. We present a method to evaluate resilience using simulation modeling. In this method, we use historical conditions (e.g., in North America, prior to European settlement), quantified using simulation modeling, to provide a comparative reference for contemporary conditions, where substantial departures indicate loss of resilience. Contemporary ecological conditions are compared statistically to the historical time series to create a resilience index, which can be used to prioritize landscapes for treatment and inform possible treatments. However, managing for resilience based on historical conditions is tenuous in the Anthropocene, which is characterized by rapid climate change, extensive human land use, altered disturbance regimes, and exotic species introductions. To account for the future variability of ecosystems resulting from climate and disturbance regime shifts, we augment historical simulations with simulations of ecosystem dynamics under projected climate and land use changes to assess the degree of departure from benchmark historical conditions. We use a mechanistic landscape model (FireBGCv2) applied to a large landscape in western Montana, USA, to illustrate the methods presented in this paper. Spatially explicit ecosystem modeling provides the vehicle to generate the historical and future time series needed to quantify potential resilience conditions associated with past and potential future conditions. Our methods show that given selection of a useful set of metrics, managers could use simulations like ours to evaluate potential future management directions.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Keane, Robert E.; Loehman, Rachel A.; Holsinger, Lisa M.; Falk, Donald A.; Higuera, Philip; Hood, Sharon M.; Hessburg, Paul F. 2018. Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere. 9(9): e02414.


    Google Scholar


    climate change, ecosystem management, future ranges of variability (FRV), historical ecology, historical range and variation (HRV), land management, landscape ecology, landscape modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page