Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Aaron T. David; J. Eli Asarian; Frank K. Lake
    Date: 2018
    Source: Water Resources Research
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.0 MB)


    To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily high-resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced solar radiation by 121 W m–2 per 1.0 AOT relative to clear-sky conditions. Linear mixed-effects models showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke-induced cooling has the potential to benefit cold-water adapted species, particularly because wildfires are more likely to occur during the warmest and driest years and seasons.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    David, Aaron T.; Asarian, J. Eli; Lake, Frank K. 2018. Wildfire smoke cools summer river and stream water temperatures. Water Resources Research. 54(10): 7273-7290.


    Google Scholar


    aerosol optical thickness, Klamath Basin, rivers, water temperature, wildfire smoke

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page