Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert M. Bergstrom; Thomas Borch; Partick H. Martin; Suellen Melzer; Charles C. Rhoades; Shawn W. Salley; Eugene F. Kelly
    Date: 2019
    Source: Geoderma. 333: 135-144.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Pedogenic processes imprint their signature on soils over the course of thousands to millions of years in most soil systems. Variation in soil forming processes - such as parent material weathering, organic material additions, hydrologic processes, and atmospheric additions - account for the distribution and sourcing of cations in ecosystems, and hence exert a strong influence on ecosystem productivity. Soil nutrient dynamics of cations also provide an indication of the dominant soil forming processes at work in a particular system. To gain insight into the generation and distribution of the soil cation pool in the Fraser Experimental Forest (FEF), we combined geochemical mass balance techniques and isotopic analyses of soil geochemical data to pedons across eight soil catenas in complex mountain terrain typical of the central Rocky Mountains. We found that mass gains in the FEF soils are primarily attributable to pedogenic additions of Ca to the soil mantle via atmospheric dust, and specifically that soil catenas on the summit landscapes were most enriched in Ca. Our data also show that atmospheric deposition contributions (calculated using Sr isotope ratios) to soils is as high as 82% (±3% SD), and that this isotopic signature in A-horizons and subsurface soil horizons diverges along a soil catena, due to both vertical and lateral hydrologic redistribution processes. Our results suggest that long term soil development and associated chemical signatures at the FEF are principally driven by the coupling of landscape scale cation supply processes, snow distribution, and snowmelt dynamics. Soil development models describing pedogenesis across catenas in montane ecosystems must pay special attention to atmospheric inputs and their redistribution. Any changes to these dynamics will affect productivity and soil/water chemistry in such ecosystems as investigated here.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bergstrom, Robert M.; Borch, Thomas; Martin, Partick H.; Melzer, Suellen; Rhoades, Charles C.; Salley, Shawn W.; Kelly, Eugene F. 2019. The generation and redistribution of soil cations in high elevation catenas in the Fraser Experimental Forest, Colorado, U.S. Geoderma. 333: 135-144.

    Cited

    Google Scholar

    Keywords

    soil catena, soil calcium, strontium isotopes, atmospheric deposition, weathering

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/57168