Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Cellulose nanofibrils (CNF) were successfully produced from a bleach kraft eucalyptus pulp by a supermasscolloider. Effects of grinding time on structure and properties of CNF and the corresponding CNF films were investigated. Grinding time was important to increase the optical transparency of CNF suspensions. The degree of polymerization (DP) and crystallinity index (CrI) of CNF decreased linearly with the increase in CNF suspension transparency. This suggests optical transparency of a CNF suspension can be used to characterize the degree of fibrillation. Specific tensile strength and Young’s modulus of the CNF films made of CNF suspension with only 0.5 h grinding were increased approximately 30% and 200%, respectively, compared with conventional handsheets prepared by valley beating to 300 Canadian Standard Freeness (CSF). Energy input was only 1.38 kWh/kg for 0.5 h grinding. Grinding beyond 0.5 h produced negligible improvement in specific tensile and specific modulus. Opacity of CNF films decreased rapidly during the first 1.5 h of fibrillation and then plateaued.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Wang, Quianquian; Zhu, J.Y. 2018. Effects of mechanical fibrillation time by disk grinding on the properties of cellulose nanofibrils. TAPPI Journal. 15(6): 419-423.

    Keywords

    Cellulose nanofibrils, grinding, fibrillation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/57179