Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Wen J. Wang; Frank R. Thompson; Hong S. He; Jacob S. FraserWilliam D. DijakMartin A. Spetich
    Date: 2018
    Source: Journal of Biogeography
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (2.0 MB)


    Aim: Population dynamics and disturbances have often been simplified or ignored when predicting regional‐scale tree species distributions in response to climate change in current climate‐distribution models (e.g., niche and biophysical process models). We determined the relative importance of population dynamics, tree harvest, climate change, and their interaction in affecting tree species distribution changes.

    Location: Central Hardwood Forest Region of the United States. Major taxa studied: Tree species.

    Methods: We used a forest dynamic model, LANDIS PRO that accounted for population dynamics, tree harvest, and climate change to predict tree species’ distributions at 270 m resolution from 2000 to 2300. We quantified the relative importance of these factors using a repeated measures analysis of variance. We further investigated the effects of each factor on changes in species distributions by summarizing extinction and colonization rates.

    Results: On average, population dynamics was the most important factor affecting tree species distribution changes. Tree harvest was more important than climate change by 2100 whereas climate change was more important than harvest by 2300. By end of the 21st century, most tree species expanded their distributions irrespective of any climate or harvest scenario. By 2300, most northern, some southern, and most widely distributed species contracted their distributions while most southern species, some widely distributed species, and few northern species expanded their distributions under warmer climates with tree harvest. Harvest accelerated or ameliorated the contractions and expansions for species that were negatively or positively affected by climate change. Main conclusions: Our results suggest that population dynamics and tree harvest can be more important than climate change and thus should be explicitly included when predicting future tree species’ distributions. Understanding the underlying mechanisms that drive tree species distributions will enable better predictions of tree species distributions under climate change.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wang, Wen J.; Thompson, Frank R.; He, Hong S.; Fraser, Jacob S.; Dijak, William D.; Spetich, Martin A. 2018. Population dynamics has greater effects than climate change on tree species distribution in a temperate forest region. Journal of Biogeography. 24(3): 563-.


    Google Scholar


    colonization, competition, dispersal, disturbance, extinction, forest landscape model, shift

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page