Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    A new frontier in clinical disease diagnostics was quietly launched by a series of recent discoveries of dysbiosis-related phenomena. These developments make important connections between the metabolic activities of resident microbes and human diseases. Numerous studies have demonstrated that biochemical mechanisms leading to disease development involve not only pathogenesis, but also interactions between microbiota in the oral cavity, lungs, and gut, as well as the microbial metabolites they produce, and the human immune system. Microbial dysbiosis (MD) or changes in commensal microbiota diversity and composition, often modulate disease development by at least two different mechanisms, including disease-induced dysbiosis and alterations in gut microbiota (GM), caused by abiotic and exogenous factors (diet, drug use, and environment). This paper summarizes recent evidence demonstrating how electronic-nose (e-nose) technologies with multi-sensor arrays and chemical-analysis capabilities could potentially be used for early diagnosis of certain diseases by identifying a new category of VOC-biomarker metabolites, called dysbiosis-related disease biomarkers (DRDBs). DRDBs are produced in specific locations of the body due to dysbiosis associated with specific diseases. Recent advances in e-nose technologies offer new tools for exploiting the common occurrence of MD for noninvasive early disease detection.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wilson, A.D.; Forse, L.B. 2019. Development of electronic-nose technologies for early disease detection based on microbial dysbiosis. (MDPI) Proceedings 4: 32.


    Google Scholar


    bacterial dysbiosis, dysbiosis-related disease biomarkers, e-nose devices, microbiome composition, noninvasive early diagnosis, volatile organic compounds

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page