Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Restoring overstocked forests by thinning and pyrolyzing residual biomass produces biochar and other value‐added products. Forest soils amended with biochar have potential to sequester carbon (C), improve soil quality, and alter greenhouse gas (GHG) emissions without depleting nutrient stocks. Yet, few studies have examined the effects of biochar on GHG emissions and tree growth in temperate forest soils. We measured GHG emissions, soil C content, and tree growth at managed forest sites in Idaho, Montana, and Oregon. We applied biochar amendments of 0, 2.5, or 25 Mg/ha to the forest soil surface. Flux of carbon dioxide and methane varied by season; however, neither were affected by biochar amendment. Flux of nitrous oxide was not detected at these nitrogen‐limited and unfertilized forest sites. Biochar amendment increased soil C content by 41% but did not affect tree growth. Overall, biochar had no detrimental effects on forest trees or soils. We conclude that biochar can be used harmlessly for climate change mitigation in forests by sequestering C in the soil.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Sarauer, Jessica L.; Page‐Dumroese, Deborah S.; Coleman, Mark D. 2019. Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. GCB Bioenergy. 11: 660-671.

    Cited

    Google Scholar

    Keywords

    carbon dioxide, conifer, methane, overstocking, recalcitrant soil carbon, thinning

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/57617