Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): John L. Campbell; Mark B. Green; Ruth D. Yanai; Christopher W. Woodall; Shawn Fraver; Mark E. Harmon; Mark A. HatfieldCharles J. Barnett; Craig R. See; Grant M. Domke
    Date: 2019
    Source: Ecological Applications
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (494.0 KB)


    Downed coarse woody debris, also known as coarse woody detritus or downed dead wood, is challenging to estimate for many reasons, including irregular shapes, multiple stages of decay, and the difficulty of identifying species. In addition, some properties are commonly not measured, such as wood density and carbon concentration. As a result, there have been few previous evaluations of uncertainty in estimates of downed coarse woody debris, which are necessary for analysis and interpretation of the data. To address this shortcoming, we quantified uncertainties in estimates of downed coarse woody debris volume and carbon storage using data collected from permanent forest inventory plots in the northeastern United States by the Forest Inventory and Analysis program of the USDA Forest Service. Quality assurance data collected from blind remeasurement audits were used to quantify error in diameter measurements, hollowness of logs, species identification, and decay class determination. Uncertainty estimates for density, collapse ratio, and carbon concentration were taken from the literature. Estimates of individual sources of uncertainty were combined using Monte Carlo methods. Volume estimates were more reliable than carbon storage, with an average 95% confidence interval of 15.9 m3/ha across the 79 plots evaluated, which was less than the mean of 31.2 m3/ha. Estimates of carbon storage (and mass) were more uncertain, due to poorly constrained estimates of the density of wood. For carbon storage, the average 95% confidence interval was 11.1 Mg C/ha, which was larger than the mean of 4.6 Mg C/ha. Accounting for the collapse of dead wood as it decomposes would improve estimates of both volume and carbon storage. On the other hand, our analyses suggest that consideration of the hollowness of downed coarse woody debris pieces could be eliminated in this region, with little effect. This study demonstrates how uncertainty analysis can be used to quantify confidence in estimates and to help identify where best to allocate resources to improve monitoring designs.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Campbell, John L.; Green, Mark B.; Yanai, Ruth D.; Woodall, Christopher W.; Fraver, Shawn; Harmon, Mark E.; Hatfield, Mark A.; Barnett, Charles J.; See, Craig R.; Domke, Grant M. 2019. Estimating uncertainty in the volume and carbon storage of downed coarse woody debris. Ecological Applications. 29(2): e01844-.


    Google Scholar


    carbon, coarse woody debris, dead wood, error analysis, forest inventory, Monte Carlo, uncertainty

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page