Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    The increase in compounding disturbances, such as "hotter droughts" coupled with insect outbreaks, has significant impacts on the integrity of forested ecosystems and their subsequent management for important ecosystem services and multiple-use objectives. In the Southern Sierra Nevada, years of severe drought have resulted in unprecedented tree mortality across this mountainous landscape. Additionally, past land management practices, including fire suppression, have led to overly stocked, homogenous forest stand structures, dominated by small diameter, shade-tolerant and fire-intolerant tree species. Thus, the current condition of the landscape has further increased the susceptibility of forest trees to multiple stressors. We sought to determine the effects of extreme drought and insect outbreaks on tree mortality and their influence on forest stand structure and composition. To characterize mortality patterns, we monitored the condition of mature forest trees (>25.4 cm diameter at breast height) across 255 monitoring plots with four repeated measurements from 2015 through 2017. Treemortality varied by species and through time. Reductions in pine species (Pinus lambertiana Douglas and P. ponderosa Lawson & C. Lawson) occurred earlier in the study period than Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. or Calocedrus decurrens (Torr.) Florin. Across species, larger tree size, most often associated with tree height, was consistently related to increased survival in mature, overstory trees. As expected, sites with greater pine stocking and subsequently more bark beetle (Curculionidae: Scolytinae) host availability had increased pine mortality, especially for P. ponderosa. For Abies concolor, lower overstory basal area increased tree survival for this species. This study highlights the importance of effective forest monitoring, especially during a period of unprecedented ecological change as the compounding disturbance had a disproportional effect on pine species in smaller diameter classes. Proactive forest management may be necessary to maintain and promote these ecologically important species in heterogeneous mixtures across the landscape.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Pile, Lauren S.; Meyer, Marc D.; Rojas, Ramiro; Roe, Olivia; Smith, Mark T. 2019. Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada. Forests. 10(3): 237. https://doi.org/10.3390/f10030237.

    Cited

    Google Scholar

    Keywords

    Ponderosa pine, Sugar pine, White fir, Red fir, California black oak, Incense-cedar, Collaborative Forest Landscape Restoration Project, adaptive management, monitoring

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/57710