Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Héctor García-Gómez; Sheila Izquieta-Rojano; Laura Aguillaume; Ignacio González-Fernández; Fernando Valiño; David Elustondo; Jesús M. Santamaría; Anna Àvila; Andrzej Bytnerowicz; Victoria Bermejo; Rocío Alonso
    Date: 2018
    Source: Environmental Pollution. 243: 427-436
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (17.0 MB)


    In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO3- and NH4+ with stomatal uptake of NH3, HNO3 and NO2 derived from the DO3SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha-1 year-1) and at the northeastern sites (17.8 and 12.5 kg N ha-1 year-1) than at the central-Spain site (9.4 kg N ha-1 year-1). On average, the estimated dry deposition of atmospheric N represented 77% ± 2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ± 2.9 kg N ha-1 year-1 for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ± 0.8 kg N ha-1 year-1 (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO2 to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10 - 20 kg N ha-1 year-1) was exceeded in three of the four studied forests.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    García-Gómez, Héctor; Izquieta-Rojano, Sheila; Aguillaume, Laura; González-Fernández, Ignacio; Valiño, Fernando; Elustondo, David; Santamaría, Jesús M.; Àvila, Anna; Bytnerowicz, Andrzej; Bermejo, Victoria; Alonso, Rocío. 2018. Joining empirical and modelling approaches to estimate dry deposition of nitrogen in Mediterranean forests. Environmental Pollution. 243: 427-436.


    Google Scholar


    Stomatal conductance model, Inferential method, Spain, Broadleaf evergreen, Quercus ilex

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page