Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Soils are subject to a variety of stressors including human land use, air pollution and climate change. A challenge for detecting temporal change is disentangling heterogeneity at multiple spatial scales. Forty permanent plots were sampled across the US White Mountain National Forest (WMNF) in 2001 or 2002 and resampled in 2014. Paired t tests detected significant increases in carbon and base cations concentrations and a decrease in Al in the Oa horizon while base cations decreased and Al increased in some mineral horizons. A subset of six plots were intensively resampled in 2015. Pooled variances were calculated using all the six intensively sampled plots from 2014 to 2015. Within-site variability was comparable to overall variability across the WMNF. When study sites were stratified into hydrologic groups, we found a strong signal in the Oa horizon of increasing carbon and base cation concentrations from 2001–2002 to 2014, suggesting that soils influenced by shallow groundwater contributions from upslope may be more responsive to acidification recovery than soils influenced only by vertical percolation. The initial study design did not consider the role of hydrologic pathways in susceptibility of soils to temporal change and did not include enough plots in each hydrologic group to maximize the power of this stratification approach. However, these results illustrate the potential for hydrologic stratification to improve change detection and interpretation in forest soil monitoring programs. The combined approach to hydrologic stratification and estimating variance components simultaneously at the landscape and within-plot scales is crucial for calculating sample size needed to detect temporal change.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Fraser, Olivia L.; Bailey, Scott W.; Ducey, Mark J. 2019. Decadal Change in Soil Chemistry of Northern Hardwood Forests on the White Mountain National Forest, New Hampshire, USA. Soil Science Society of America Journal. 83: S96–S104.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page