Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Erika Marin-Spiotta; Anthony W. D'Amato; Brian J. PalikRandall K. Kolka
    Date: 2019
    Source: Soil Biology and Biochemistry
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (683.0 KB)

    Description

    Forest soil ecosystems can be negatively affected by intensive biomass harvesting due to losses of organic inputs and soil compaction, ultimately leading to reduced forest productivity. In this research, we revisited a site from the North American Long-Term Soil Productivity study located on a sandy Spodosol within the Huron National Forest in Michigan, USA, to measure the effects of aboveground organic matter removal of different intensities (three levels: bole only; whole tree harvest; or whole tree harvest and forest floor removal) and soil compaction (2 levels: no or moderate compaction) nearly 20 years following the initial treatments. The effects of harvesting on the soil microbial community in surface and subsurface soils and on soil nutrient availability in surface soils were evaluated. Additionally, patterns of carbon and nitrogen distribution among soil organic matter pools in surface and subsurface soils were compared using a physical fractionation approach to isolate a free – light fraction of particulate organic matter external to aggregates, an occluded – light fraction, which represents particulate organic matter released from the disruption of soil aggregates, and a heavy or mineral-associated fraction. Whole-tree harvests had significantly different microbial community compositions than bole-only harvests (P=0.02), a result driven by significantly lower abundance of arbuscular mycorrhizae and greater gram positive bacterial abundance in the whole-tree harvest relative to bole-only harvest conditions. Few differences in soil nutrient availability were apparent 20 years after organic matter manipulations, with the exception of reduced calcium availability where organic matter was removed. Soil compaction resulted in greater microbial biomass (0.19 versus 0.14 μmol g−1 soil), which may have also led to a reduced C:N ratio in the heaviest and oldest soil component and increased P availability as well. Nitrogen concentrations and stocks were greatest at the surface (0–10 cm depth) for the free and light soil fractions in bole-only removal treatments, in contrast to whole-tree harvest treatments where C and N concentrations and C stocks were greater in the subsurface soil (free - light fraction at 20–30 cm depth). The soil microbial community, soil fraction size, and soil C and N stocks differed between surface and subsurface soils, highlighting the soil forming processes at work in this Spodosol, and the importance of sampling multiple depths to address research questions. These results demonstrate the long-term effects of forest management on soil biological, physical, and chemical properties and are useful in evaluating sustainable biomass harvesting practices for comparable forests.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lewandowski, Tera E.; Forrester, Jodi A.; Mladenoff, David J.; Marin-Spiotta, Erika; D'Amato, Anthony W.; Palik, Brian J.; Kolka, Randall K. 2019. Long term effects of intensive biomass harvesting and compaction on the forest soil ecosystem. Soil Biology and Biochemistry. 137: 107572. 10 p.  https://doi.org/10.1016/j.soilbio.2019.107572.

    Cited

    Google Scholar

    Keywords

    Biomass harvest, Soil compaction, Soil organic matter, Density fractionation, Soil microbial community, Soil nutrient availability

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58463