Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sevda Alanya-RosenbaumRichard D. Bergman
    Date: 2019
    Source: Journal of Cleaner Production. 233: 918-931.
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (5.0 MB)

    Description

    Forest residue biomass can be used as bioenergy feedstock, however, issues associated with its properties including low density and high moisture content constrains its valorization. Using mobile conversion technologies that can operate in remote areas and are capable of converting forest residues into high quality energy products can address the issues associated with its valorization for renewable energy production. This study evaluated environmental sustainability of using an integrated novel system of semi-mobile biomass conversion technologies (BCTs) to utilize low-value forest residue biomass as high value bioenergy products. A cradle-to-grave life cycle assessment (LCA) and resource use assessment on a unit-process level was conducted for two bio-products: nontorrefied briquettes (NTB) and torrefied briquettes (TOB). Their use for production of useful thermal energy in wood stoves for domestic heating and electricity at power plants were investigated along with their alternatives. The analyses were performed with SimaPro 8.5 using the DATASMART database. The impact assessment results showed a notable decrease in global warming (GW) impact when substituting fossil fuels with these two bioproducts. Specifically, for domestic heating on an equivalent energy basis, a 50% substitution of propane with NTB and TOB showed GHG emission reductions of 46% and 41%, respectively. For electricity generation, 10% cofiring at coal power plant with NTB and TOB showed GHG emission reductions of 6% and 8%, respectively. For the TOB supply chain, a large portion of the GW impact of the came from the torrefaction process and followed by the drying process. This was due to the propane use in these processes. Comparative analysis showed that near-woods biomass conversion for TOB production instead of processing feedstock at an in-town facility with access to grid electricity found 48%-55% lower GW impact for both electricity and heat generation scenarios, respectively. Resourced footprint analysis showed that most exergy extraction from the natural environment came from the drying process for NTB supply chain. In the TOB product system, torrefaction was the major contributor.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Alanya-Rosenbaum, Sevda; Bergman, Richard D. 2019. Life-cycle impact and exergy based resource use assessment of torrefied and non-torrefied briquette use for heat and electricity generation. Journal of Cleaner Production. 233: 918-931.

    Cited

    Google Scholar

    Keywords

    Torrefaction, wood briquettes, life cycle assessment, resource use assessment, exergetic life cycle assessment, bioenergy

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58474