Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Old-growth coniferous forests of the Pacific Northwest are among the most productive temperate ecosystems and have the capacity to store large amounts of carbon for multiple centuries. To date, there are considerable gaps in modeling ecosystem fluxes and their responses to physiological constraints in these old-growth forests. These model shortcomings limit our ability to understand and project how the old-growth forests of the Pacific Northwest will respond to global climate change. This study applies the cohort-based Ecosystem Demography Model 2 (ED2) to the Wind River Experimental Forest (Washington, USA), a well-studied old-growth Douglas-fir–western hemlock ecosystem. ED2 is calibrated and validated using an extensive suite of forest inventory, eddy covariance, and biophysical observations. ED2 is able to reproduce observed forest composition and canopy structure, and carbon, water, and energy fluxes at the site. In the simulations, the effect of limited water supply on ecosystem carbon fluxes is mediated primarily by the forest’s gross primary productivity (GPP) response, rather than its heterotrophic respiration response. The simulation indicates that stomatal conductance is mainly determined by soil moisture during periods of low vapor pressure deficit (VPD). However, when VPD is high, stomatal conductance is greatly reduced regardless of soil moisture status. During summer droughts, reduced soil moisture and increased VPD result in considerable stomatal closure and GPP reduction, which in turn decreases net carbon uptake. Cohort-based scheme integrates all canopy layers (species) that have distinct sensitivity to microclimate and respond distinctly to drought. This study is an initial first step to explore the potential importance of cohort-based model in simulating forest with complex structure, and to lay the foundation for applying cohort-based model at regional scales across the Pacific Northwest.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Jiang, Yueyang; Kim, John B.; Trugman, Anna T.; Kim, Youngil; Still, Christopher J. 2019. Linking tree physiological constraints with predictions of carbon and water fluxes at an old‐growth coniferous forest. Ecosphere. 10(4): e02692-. https://doi.org/10.1002/ecs2.2692.

    Cited

    Google Scholar

    Keywords

    Carbon flux, cohort-based model, old-growth coniferous forest, physiological constraint, tree physiology, water flux.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58515