Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mitra Menon; Erin Landguth; Alejandro Leal‐Saenz; Justin C. Bagley; Anna W. Schoettle; Christian Wehenkel; Lluvia Flores‐Renteria; Samuel A. Cushman; Kristen M. Waring; Andrew J. Eckert
    Date: 2019
    Source: Evolutionary Application. 2019: 1-15.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (1.0 MB)


    A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well‐developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization‐mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio‐temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual‐based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Menon, Mitra; Landguth, Erin; Leal‐Saenz, Alejandro; Bagley, Justin C.; Schoettle, Anna W.; Wehenkel, Christian; Flores‐Renteria, Lluvia; Cushman, Samuel A.; Waring, Kristen M.; Eckert, Andrew J. 2019. Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evolutionary Application. 2019: 1-15.


    Google Scholar


    CDMetaPOP, cline analysis, conifers, forest management, hybrid zone movement, hybrid zones, range dynamics

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page