Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Eric J. Gustafson; Mark E. Kubiske; Brian R. Miranda; Yasutomo Hoshika; Elena Paoletti
    Date: 2018
    Source: Ecological Processes
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (2.0 MB)


    Introduction: The Aspen-FACE experiment was an 11-year study of the effect of elevated CO2 and ozone (alone and in combination) on the growth of model aspen communities (pure aspen, aspen-birch, and aspen-maple) in the field in northern Wisconsin, USA. Uncertainty remains about how these short-term plotlevel responses might play out over broader temporal and spatial scales where climate change, competition, succession, and disturbances interact with tree-level responses. In this study, we used a new physiologybased approach (PnET-Succession v3.1) within the forest landscape model LANDIS-II to extrapolate the FACE results to broader temporal scales (and ultimately to landscape scale) by mechanistically accounting for the globally changing drivers of temperature, precipitation, CO2, and ozone. We added novel algorithms to the model to mechanistically simulate the effects of ozone on photosynthesis through ozone-induced impairment of stomatal control (i.e., stomatal sluggishness) and damage of photosynthetic capacity at the chloroplast level. Results: We calibrated the model to empirical observations of competitive interactions on the elevated CO2 and O3 plots of the Aspen-FACE experiment and successfully validated it on the combined factor plots. We used the validated model to extend the Aspen-FACE experiment for 80 years. When only aspen clones competed, we found that clone 271 always dominated, although the ozone-tolerant clone was co-dominant when ozone was present. Under all treatments, when aspen clone 216 and birch competed, birch was always dominant or co-dominant, and when clone 216 and maple competed, clone 216 was dominant, although maple was able to grow steadily because of its shade tolerance. We also predicted long-term competitive outcomes for novel assemblages of taxa under each treatment and discovered that future composition and dominant taxa depend on treatment, and that short-term trends do not always persist in the long term. Conclusions: We identified the strengths and weaknesses of PnET-Succession v3.1 and conclude that it can generate potentially robust predictions of the effects of elevated CO2 and ozone at landscape scales because of its mechanistically motivated algorithms. These capabilities can be used to project forest dynamics under anticipated future conditions that have no historical analog with which to parameterize less mechanistic models.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Gustafson, Eric J.; Kubiske, Mark E.; Miranda, Brian R.; Hoshika, Yasutomo; Paoletti, Elena. 2018. Extrapolating plot-scale CO2 and ozone enrichment experimental results to novel conditions and scales using mechanistic modeling. Ecological Processes. 7(1): 31. 20 p.


    Google Scholar


    Scaling, Global change, Elevated CO2, Ozone pollution, Aspen-FACE, Forest composition, Carbon dynamics, Forest landscape modeling, LANDIS-II, PnET-succession

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page