Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Automated grading machines that quantify knots are increasingly deployed by lumber mills, however their use in mill studies that assess lumber quality have been limited. The objective here was to develop a method to evaluate the knots of loblolly pine lumber using image analysis and to develop models to predict modulus of elasticity (MOE) and modulus of rupture (MOR) from 171 pieces of dimension lumber. Lumber was photographed on the wide faces and individual knots were identifed using the k-means clustering algorithm. The percentage of wood made up of knots on the wide faces (Knot%) was calculated by summing the individual knot areas over the total surface area, as well as on a sub-section of the lumber span which was optimized separately for MOE (Knot%MOE) and MOR (Knot%MOR). Models were built using the knot measurements and compared to models built using specifc gravity (SG) and acoustic velocity squared (AV2). Knot% explained 30% of the variation in MOE and 39% of the variation in MOR. Incorporating Knot%MOE into a model with SG and AV2 did not appreciably improve model performance (R2=0.75, RMSE=1.1 GPa) over the base SG and AV2 model (R2=0.74, RMSE =1.2 GPa). Incorporating Knot%MOR into a model with SG and AV2 signifcantly improved the prediction (R2=0.65, RMSE =7.2 MPa) compared to the base SG and AV2 model (R2 = 0.56, RMSE = 8.0 MPa). This study demonstrates the feasibility of using image analysis to assess knot information in lumber to improve predictions of mechanical properties.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Wright, Stephen; Dahlen, Joseph; Montes, Cristian; Eberhardt, Thomas L. 2019. Quantifying knots by image analysis and modeling their effects on the mechanical properties of loblolly pine lumber. European Journal of Wood and Wood Products. 77(5): 903-917.

    Cited

    Google Scholar

    Keywords

    Southern pine, wood quality, specific gravity, knots

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58829