Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Yinan He; Gang Chen; Angela De Santis; Dar A. Roberts; Yuyu Zhou; Ross K. Meentemeyer
    Date: 2019
    Source: Remote Sensing of Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (4.0 MB)

    Description

    Forest ecosystems are subject to recurring fires as one of their most significant disturbances. Accurate mapping of burn severity is crucial for post-fire land management and vegetation regeneration monitoring. Remote-sensing-based monitoring of burn severity faces new challenges when forests experience both fire and non-fire disturbances, which may change the biophysical and biochemical properties of trees in similar ways. In this study, we develop a Disturbance Weighting Analysis Model (DWAM) for accurately mapping burn severity in a forest landscape that is jointly affected by wildfire and an emerging infectious disease – sudden oak death. Our approach treats burn severity in each basic mapping unit (e.g., 30 m grid from a post-fire Landsat image) as a linear combination of burn severity of trees affected (diseased) and not affected by the disease (healthy), weighted by their areal fractions in the unit. DWAM is calibrated using two types of inputs: i) look-up tables (LUTs) linking burn severity and post-fire spectra for diseased and healthy trees, derived from field observations, hyperspectral sensors [e.g., Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)], and radiative transfer models; and ii) pre-fire fractional maps of diseased and healthy trees, derived by decomposing a pre-fire Landsat image using Multiple Endmember Spectral Mixture Analysis (MESMA). Considering the presence of tree disease in DWAM improved the overall map accuracy by 42%. The superior performance is consistent across all three stages of disease progression. Our approach demonstrates the potential for improved mapping of forest burn severity by reducing the confounding effects of other biotic disturbances.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    He, Yinan; Chen, Gang; De Santis, Angela; Roberts, Dar A.; Zhou, Yuyu; Meentemeyer, Ross K. 2019. A disturbance weighting analysis model (DWAM) for mapping wildfire burn severity in the presence of forest disease. Remote Sensing of Environment. 221: 108-121. https://doi.org/10.1016/j.rse.2018.11.015.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58876