Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Conservation planning for wildlife species requires mapping and assessment of habitat suitability across broad areas, often relying on a diverse suite, or stack, of geospatial data presenting multidimensional controls on a species. Stacks of univariate, independently developed vegetation layers may not represent relationships between each variable that can be characterized by multivariate modeling techniques, leading to inaccurate inferences on the distribution of suitable habitat. In this paper, we examine the role of variable combining in mapping multiple dimensions of greater sage-grouse (Centrocercus urophasianus, GRSG) habitat as a basis for GRSG conservation in the great basin ecoregion within southeastern Oregon. We compare two modeling approaches: a univariate random forest regression model (RF regression) and a multivariate random forest nearest neighbor (RFNN) imputation model , across an array of variables. These include five GRSG habitat descriptor variables: percent cover of trees, juniper, sagebrush, and GRSG food forbs, and the proportion of grasses that are exotic annuals. We also model species distributions of 51 common species in the sage steppe and combine these predictions to estimate alpha diversity. Our results show that RF regression and RFNN can yield univariate predictions with similar performance, but RF regression predictions tend to contain slightly more bias at broader spatial scales. Stacking univariate predictions from RF regression yields covariance errors that manifest as logical errors (juniper cover > tree cover), biases in estimates of GRSG habitat area, and biases in estimates of alpha diversity. Combining variables from the RFNN model does not introduce covariance errors. We conclude that multivariate modeling approaches are better suited to map multidimensional habitat niches at broader spatial scales, and also better suited to provide information for defining multivariable adaptive management triggers at the population level or above.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Henderson, Emilie B.; Bell, David M.; Gregory, Matthew J. 2019. Vegetation mapping to support greater sage‐grouse habitat monitoring and management: multi‐ or univariate approach?. Ecosphere. 10(8): 967-. https://doi.org/10.1002/ecs2.2838.

    Cited

    Google Scholar

    Keywords

    Greater sage-grouse, habitat mapping, nearest neighbor imputation, random forest, sage steppe, southeast Oregon.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58906