Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): John B. Bradford; Daniel R. Shlaepfer; William K. Lauenroth; Kyle A. Palmquist; Jeanne C. Chambers; Jeremy D. Maestas; Steven B. Campbell
    Date: 2019
    Source: Frontiers in Ecology and Evolution. doi: 10.3389/fevo.2019.00358.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (2.0 MB)

    Description

    Assessing landscape patterns in climate vulnerability, as well as resilience and resistance to drought, disturbance, and invasive species, requires appropriate metrics of relevant environmental conditions. In dryland systems of western North America, soil temperature andmoisture regimes have been widely utilized as an indicator of resilience to disturbance and resistance to invasive plant species by providing integrative indicators of long-term site aridity, which relates to ecosystem recovery potential and climatic suitability to invaders. However, the impact of climate change on these regimes, and the suitability of the indicator for estimating resistance and resilience in the context of climate change have not been assessed. Here we utilized a daily time-step, process-based, ecosystem water balance model to characterize current and future patterns in soil temperature and moisture conditions in dryland areas of western North America, and evaluate the impact of these changes on estimation of resilience and resistance. Soil temperature increases in the twenty-first century are substantial, relatively uniform geographically, and robust across climate models. Higher temperatures will expand the areas of mesic and thermic soil temperature regimes while decreasing the area of cryic and frigid temperature conditions. Projections for future precipitation are more variable both geographically and among climate models. Nevertheless, future soil moisture conditions are relatively consistent across climate models for much of the region. Projections of drier soils are expected in most of Arizona and New Mexico, as well as the central and southern U.S. Great Plains. By contrast, areas with projections of increasing soil moisture include northeastern Montana, southern Alberta and Saskatchewan, and many areas dominated by big sagebrush, particularly the Central and Northern Basin and Range and the Wyoming Basin ecoregions. In addition, many areas dominated by big sagebrush are expected to experience pronounced shifts toward cool season moisture, which will create more area with xeric moisture conditions and less area with ustic conditions. In addition to indicating widespread geographic shifts in the distribution of soil temperature andmoisture regimes, our results suggest opportunities for enhancing the integration of these conditions into a quantitative framework for assessing climate change impacts on dryland ecosystem resilience and resistance that is responsive to long-term projections.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bradford, John B.; Shlaepfer, Daniel R.; Lauenroth, William K.; Palmquist, Kyle A.; Chambers, Jeanne C.; Maestas, Jeremy D.; Campbell, Steven B. 2019. Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Frontiers in Ecology and Evolution. doi: 10.3389/fevo.2019.00358.

    Cited

    Google Scholar

    Keywords

    aridification, big sagebrush ecosystems, cheatgrass, climate change, drought, ecological transformation, vulnerability

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/58910