Skip to main content
U.S. flag

An official website of the United States government

Fire spread upslope: Numerical simulation of laboratory experiments


X. Sanchez-Monroy
J. Torres-Arenas



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Pacific Northwest Research Station

Historical Station(s):

Rocky Mountain Forest and Range Experiment Station


Fire Safety Journal. 108: 102844.


Numerical simulations of laboratory-scale experiments, with no wind imposed, were performed for fuel bed slopes ranging from 0° to 45°. The implementation of a vertical symmetry plane (SP) placed, span-wise, along the middle of the computational domain, was assessed as an approach to reduce computational cost. The simulations were performed with Wildland-urban interface Fire Dynamics Simulator (WFDS). The experimental trends of the compared quantities were reproduced well by the simulations. Radiative heat transfer is the dominant mechanism of heating for slope angles between 0° and 22°, and convection heat transfer mechanism starts to be relevant and becomes more important than radiation for slopes of 31° and 45°. Similar to other studies, it was found a “critical” angle of 22°. For slopes angles greater than the critical value, there are significant changes in the wind conditions at the base of the flame which result in a more rapid increase in the rate of spread with increasing slope.


Sanchez-Monroy, X.; Mell, W.; Torres-Arenas, J.; Butler, B. W. 2019. Fire spread upslope: Numerical simulation of laboratory experiments. Fire Safety Journal. 108: 102844.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.