Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Andrew ListerTonya ListerThomas Weber
    Date: 2019
    Source: Forests
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (4.0 MB)

    Description

    Forest fragmentation and degradation are a problem in many areas of the world and are a cause for concern to land managers. Similarly, countries interested in curtailing climate change have a keen interest in monitoring forest degradation. Traditional methods for measuring forested landscape pattern dynamics with maps made from classified satellite imagery fall short with respect to the compatibility of their forest definitions with information needs. In addition, they are not easily amenable to interpretation using tools like confidence intervals derived from survey sampling theory. In this paper, we described a novel landscape monitoring approach that helps fill these gaps. In it, a grid of photo plots is effciently created and overlaid on high-resolution imagery, points are labeled with respect to their land-use by a human interpreter, and mean values and their variance are calculated for a suite of point-based fragmentation metrics related to forest degradation. We presented three case studies employing this approach from the US states of Maryland and Pennsylvania, highlighted different survey sampling paradigms, and discussed the strengths and weaknesses of the method relative to traditional, satellite imagery-based approaches. Results indicate that the scale of forest fragmentation in Maryland is between 250 and 1000 m, and this agrees with compatible estimates derived from raster analytical methods. There is a positive relationship between an index of housing construction and change in forest aggregation as measured by our metrics, and strong agreement between metric values collected by human interpretation of imagery and those obtained from a land cover map from the same period. We showed how the metrics respond to simulated degradation, and offered suggestions for practitioners interested in leveraging rapid photointerpretation for forest degradation monitoring.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lister, Andrew; Lister, Tonya; Weber, Thomas. 2019. Semi-Automated Sample-Based Forest Degradation Monitoring with Photointerpretation of High-Resolution Imagery. Forests. 10(10): 896. 18 p. https://doi.org/10.3390/f10100896.

    Cited

    Google Scholar

    Keywords

    forest degradation monitoring, forest fragmentation, photointerepretation, Collect Earth Online, sample-based estimation, forest monitoring, REDD, image-based change estimation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/59035