Skip to main content
U.S. flag

An official website of the United States government

Ongoing modifications to root system architecture of Pinus ponderosa growing on a sloped site revealed by tree-ring analysis

Author(s):

Antonio Montagnoli
Mattia Terzaghi
Donato Chiatante
Gabriella S. Scippa
Bruno Lasserre

Year:

2019

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station

Source:

Dendrochronologia. 58: 125650.

Description

Our knowledge of the root system architecture of trees is still incomplete, especially concerning how biomass partitioning is regulated to achieve an optimal, but often unequal, distribution of resources. In addition, our comprehension of root system architecture development as a result of the adaptation process is limited because most studies lack a temporal approach. To add to our understanding, we excavated 32-year-old Pinus ponderosa trees from a steep, forested site in northern Idaho USA. The root systems were discretized by a low magnetic field digitizer and along with AMAPmod software we examined their root traits (i.e. order category, topology, growth direction length, and volume) in four quadrants: downslope, upslope, windward, and leeward. On one tree, we analyzed tree rings to compare the ages of lateral roots relative to their parental root, and to assess the occurrence of compression wood. We found that, from their onset, first-order lateral roots have similar patterns of ring eccentricity suggesting an innate ability to respond to different mechanical forces; more root system was allocated downslope and to the windward quadrant. In addition, we noted that shallow roots, which all presented compression wood, appear to be the most important component of anchorage. Finally, we observed that lateral roots can change growth direction in response to mechanical forces, as well as produce new lateral roots at any development stage and wherever along their axis. These findings suggest that trees adjust their root spatial deployment in response to environmental conditions, these roots form compression wood to dissipate mechanical forces, and new lateral roots can arise anywhere and at any time on the existing system in apparent response to mechanical forces.

Citation

Montagnoli, Antonio; Terzaghi, Mattia; Chiatante, Donato; Scippa, Gabriella S.; Lasserre, Bruno; Dumroese, R. Kasten. 2019. Ongoing modifications to root system architecture of Pinus ponderosa growing on a sloped site revealed by tree-ring analysis. Dendrochronologia. 58: 125650.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/59121