Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Gabriela T. Niño de Guzmán; Cathleen J. Hapeman; Kusuma Prabhakara; Eton E. Codling; Daniel R. Shelton; Clifford P. Rice; W. Dean Hively; Gregory W. McCarty; Megan W. Lang; Alba Torrents
    Date: 2012
    Source: Science of The Total Environment
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (962.0 KB)


    Row-crop and poultry production have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined the effects of land use, subwatershed characteristics, and climatic conditions on the water quality parameters of a subwatershed in the Choptank River watershed. The catchments within the subwatershed were defined using advanced remotely-sensed data and current geographic information system processing techniques. Water and sediment samples were collected in May–October 2009 and April–June 2010 under mostly baseflow conditions and analyzed for select bacteria, nitrate-N, ammonium-N, total arsenic, total phosphorus (TP), orthophosphate (ortho-P), and particle-phase phosphorus (PP); n=96 for all analytes except for arsenic, n=136, and for bacteria, n=89 (aqueous) and 62 (sediment). Detections of Enterococci and Escherichia coli concentrations were ubiquitous in this subwatershed and showed no correlation to location or land use, however larger bacterial counts were observed shortly after precipitation. Nitrate-N concentrations were not correlated with agricultural lands, which may reflect the small change in percent agriculture and/or the similarity of agronomic practices and crops produced between catchments. Concentration data suggested that ammonia emission and possible deposition to surface waters occurred and that these processes may be influenced by local agronomic practices and climatic conditions. The negative correlation of PP and arsenic concentrations with percent forest was explained by the stronger signal of the head waters and overland flow of particulate phase analytes versus dissolved phase inputs from groundwater. Service roadways at some poultry production facilities were found to redirect runoff from the facilities to neighboring catchment areas, which affected water quality parameters. Results suggest that in this subwatershed, catchments with poultry production facilities are possible sources for arsenic and PP as compared to catchment areas where these facilities were not present.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Niño de Guzmán, Gabriela T.; Hapeman, Cathleen J.; Prabhakara, Kusuma; Codling, Eton E.; Shelton, Daniel R.; Rice, Clifford P.; Hively, W. Dean; McCarty, Gregory W.; Lang, Megan W.; Torrents, Alba. 2012. Potential pollutant sources in a Choptank River (USA) subwatershed and the influence of land use and watershed characteristics. Science of The Total Environment. 430: 270-279.


    Google Scholar


    Chesapeake Bay, Water quality, Nutrients, Arsenic, Poultry production, Land use

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page