Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Lignin, a byproduct from the chemical processing of lignocellulosic biomass, is a polyphenolic compound that has potential as a partial phenol substitute in phenolic adhesive formulations. In this study, HBr and HI were used as reagents to demethylate an alkali lignin (AL) to increase its hydroxyl content and thereby enhance its reactivity for the preparation of phenolic resins. Analyses by FT-IR, 1H-NMR and 2D-NMR(HSQC) demonstrated both a decrease in methoxyl groups and an increase in hydroxyl groups for each demethylated lignin (DL). In addition, the molar amounts of phenolic hydroxyls, determined by 1H-NMR, increased to 0.67 mmol/g for the HI-DL, and 0.64 mmol/g for the HBr-DL, from 0.52 mmol/g for the AL. These results showed that HI, a stronger nucleophilic reagent than HBr, provided a higher degree of AL demethylation. Lignin-containing resins, prepared by copolymerization, met the bonding strength standard for exterior plywood with DL used to replace as much as 50 wt.% of phenol. The increased hydroxyl contents resulting from the lignin demethylations also imparted faster cure times for the lignin-containing resins and lower formaldehyde emissions. Altogether, the stronger nucleophilicity of HI, compared to HBr, impacted the degree of lignin demethylation, and carried through to measurable differences the thermal properties and performance of the lignin-containing PF resins.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wang, Hao; Eberhardt, Thomas L.; Wang, Chunpeng; Gao, Shishuai; Pan, Hui. 2019. Demethylation of alkali lignin with halogen acids and its application to phenolic resins. Polymers. 11(11). 16 p.


    Google Scholar


    Alkali lignin, demethylation, halogen acids, phenolic resin

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page