Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Devendra M. AmatyaCarl C. Trettin
    Date: 2019
    Source: The Journal of South Carolina Water Resources
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Long-term research on gauged watersheds within the USDA Forest Service’s Experimental Forest and Range (EFR) network has contributed substantially to our understanding of relationships among forests, water, and hydrologic processes and watershed management, yet there is only limited information from coastal forests. This article summarizes key findings from hydrology and water-quality studies based on long-term monitoring on first-, second-, and third-order watersheds on the Santee Experimental Forest, which are a part of the headwaters of the east branch of the Cooper River that drains into the harbor of Charleston, South Carolina. The watersheds are representative forest ecosystems that are characteristic of the low-gradient Atlantic Coastal Plain. The long-term (35-year) water balance shows an average annual runoff of 22% of the precipitation and an estimated 75% for the evapotranspiration (ET), leaving the balance to groundwater. Non-growing season prescribed fire, an operational management practice, shows no effects on streamflow and nutrient export. The long-term records were fundamental to understanding the effects of Hurricane Hugo in 1989 on the water balance of the paired watersheds that were related to vegetation damage by Hugo and post-Hugo responses of vegetation. The long-term precipitation records showed that the frequency of large rainfall events has increased over the last two decades. Although there was an increase in air temperature, there was no effect of that increase on annual streamflow and water table depths. The long-term watershed records provide information needed to improve design, planning, and assessment methods and tools used for addressing the potential impacts of hydrologic responses on extreme events; risk and vulnerability assessments of land use; and climate and forest disturbance on hydrology, ecology, biogeochemistry, and water supply.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Amatya, Devendra M.; Trettin, Carl C. 2019. Long-term ecohydrologic monitoring: A case study from the Santee Experimental Forest, South Carolina. The Journal of South Carolina Water Resources. (6): 46-55. https://doi.org/10.34068/JSCWR.06.05.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/59583