Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Nicholas S. SkowronskiMichael R. Gallagher; Timothy A. Warner
    Date: 2020
    Source: Fire
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (4.0 MB)


    Within the realms of both wildland and prescribed fire, an understanding of how fire severity and forest structure interact is critical for improving fuels treatment effectiveness, quantifying the ramifications of wildfires, and improving fire behavior modeling. We integrated high resolution estimates of fire severity with multi-temporal airborne laser scanning data to examine the role that various fuel loading, canopy shape, and other variables had on predicting fire severity for a complex of prescribed fires and one wildfire and how three-dimensional fuels changed as a result of these fires. Fuel loading characteristics were widely variable, and fires were ignited using a several techniques (heading, flanking, and backing), leading to a large amount of variability in fire behavior and subsequent fire effects. Through our analysis, we found that fire severity was linked explicitly to pre-fire fuel loading and structure, particularly in the three-dimensional distribution of fuels. Fire severity was also correlated with post-fire fuel loading, forest structural heterogeneity, and shifted the diversity and abundance of canopy classes within the landscape. This work demonstrates that the vertical distribution of fuel is an important factor and that subtle difference has defined effects on fire behavior and severity.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Skowronski, Nicholas S.; Gallagher, Michael R.; Warner, Timothy A. 2020. Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches. Fire. 3(1): 7. 21 p.


    Google Scholar


    light detection and ranging, fire severity, canopy fuel loading

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page