Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Coupled fire-atmospheric modeling tools are increasingly used to understand the complex and dynamic behavior of wildland fires. Multiple research tools linking combustion to fluid flow use Navier-Stokes numerical solutions coupled to a thermodynamic model to understand fire-atmospheric feedbacks, but these computational fluid dynamics approaches require high-performance computing resources. We present a new simulation tool called QUIC-Fire to rapidly solve these feedbacks by coupling the mature 3-D rapid wind solver QUIC-URB to a physicsbased cellular automata fire spread model Fire-CA. QUIC-Fire uses 3-D fuels inputs similar to the CFD model FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for prescribed fire planners to compare, evaluate, and design burn plans, including complex ignition patterns and coupled fire-atmospheric feedbacks.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Linn, R.R.; Goodrick, S.L.; Brambilla, S.; Brown, M.J.; Middleton, R.S.; O'Brien, J.J.; Hiers, J.K. 2020. QUIC-fire: A fast-running simulation tool for prescribed fire planning. Environmental Modelling & Software. 125: 104616-.


    Google Scholar


    Fire behavior model, Fire-atmospheric feedbacks, Cellular automata, Prescribed fire model

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page