Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Johanna Riikonen; Minna Kivimäenpää; Vladimir Ossipov; Amelie Saunier; Paula Marquardt
    Date: 2020
    Source: Forests
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (979.0 KB)

    Description

    Research Highlights: Long-term exposure of paper birch to elevated carbon dioxide (CO2) and ozone (O3) modified metabolite content of over-wintering buds, but no evidence of reduced freezing tolerance was found. Background and Objectives: Atmospheric change may affect the metabolite composition of over-wintering buds and, in turn, impact growth onset and stress tolerance of perennial plant species in spring. Materials and Methods: Low molecular weight compounds of paper birch (Betula papyrifera) buds, including lipophilic, polar and phenolic compounds were analyzed, and freezing tolerance (FT) of the buds was determined prior to bud break after 11 growing seasons exposure of saplings to elevated concentrations of CO2 (target concentration 560 μL L-1) and O3 (target concentration 1.5 × ambient) at the Aspen FACE (Free-Air CO2 and O3 Enrichment) facility. Results: The contents of lipophilic and phenolic compounds (but not polar compounds) were affected by elevated CO2 and elevated O3 in an interactive manner. Elevated O3 reduced the content of lipids and increased that of phenolic compounds under ambient CO2 by reallocating carbon from biosynthesis of terpenoids to that of phenolic acids. In comparison, elevated CO2 had only a minor effect on lipophilic and polar compounds, but it increased the content of phenolic compounds under ambient O3 by increasing the content of phenolic acids, while the content of flavonols was reduced. Conclusions: Based on the freezing test and metabolite data, there was no evidence of altered FT in the over-wintering buds. The impacts of the alterations of bud metabolite contents on the growth and defense responses of birches during early growth in spring need to be uncovered in future experiments.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Riikonen, Johanna; Kivimäenpää, Minna; Ossipov, Vladimir; Saunier, Amelie; Marquardt, Paula. 2020. Metabolite Composition of Paper Birch Buds after Eleven Growing Seasons of Exposure to Elevated CO2 and O3. Forests. 11(3): 330. 14 p. https://doi.org/10.3390/f11030330.

    Cited

    Google Scholar

    Keywords

    Betula papyrifera, bud, carbon dioxide, frost hardiness, global change, metabolome, over-wintering, ozone

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/59863